If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+1=139
We move all terms to the left:
2x^2+1-(139)=0
We add all the numbers together, and all the variables
2x^2-138=0
a = 2; b = 0; c = -138;
Δ = b2-4ac
Δ = 02-4·2·(-138)
Δ = 1104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1104}=\sqrt{16*69}=\sqrt{16}*\sqrt{69}=4\sqrt{69}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{69}}{2*2}=\frac{0-4\sqrt{69}}{4} =-\frac{4\sqrt{69}}{4} =-\sqrt{69} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{69}}{2*2}=\frac{0+4\sqrt{69}}{4} =\frac{4\sqrt{69}}{4} =\sqrt{69} $
| 0.12x80=x | | 2=b−17 | | .22x=180 | | α2-10a=75 | | 11=x=+(-17) | | y÷18=0.5 | | 3.19=3.4+2.1c | | p−14–4=–1 | | F5=8n-3 | | 9.99s+7.99s=53.95 | | 0.3r=r | | -6x+6.3=-2(x-3.09) | | 5y-4(4-y)=y+2 | | 14=z−(−12 | | 6+2w=15-w | | 4(u+1)+7(2u+3)=151 | | -2(4t+3)+2t=12 | | 8x+32=-2x+18 | | 9g–8g–1=16 | | -4=+x=-27 | | 8*(y+4)=7y+38 | | 8z-2+2z-4=84 | | 32+8y=7y+38 | | (19x-18)=(10x-9)=(7x+1) | | 2x/16+40=-80-4x/2 | | 3x=10-2x= | | 115=-16t^2 | | 6n+8=1-2 | | 12x−7=11x−19, | | -15=5(k+4) | | -15=5(k+4 | | 4x^2-x^2+2=0 |